3.28 \(\int \frac{\cosh ^{-1}(a x)^3}{x^2} \, dx\)

Optimal. Leaf size=104 \[ -6 i a \cosh ^{-1}(a x) \text{PolyLog}\left (2,-i e^{\cosh ^{-1}(a x)}\right )+6 i a \cosh ^{-1}(a x) \text{PolyLog}\left (2,i e^{\cosh ^{-1}(a x)}\right )+6 i a \text{PolyLog}\left (3,-i e^{\cosh ^{-1}(a x)}\right )-6 i a \text{PolyLog}\left (3,i e^{\cosh ^{-1}(a x)}\right )-\frac{\cosh ^{-1}(a x)^3}{x}+6 a \cosh ^{-1}(a x)^2 \tan ^{-1}\left (e^{\cosh ^{-1}(a x)}\right ) \]

[Out]

-(ArcCosh[a*x]^3/x) + 6*a*ArcCosh[a*x]^2*ArcTan[E^ArcCosh[a*x]] - (6*I)*a*ArcCosh[a*x]*PolyLog[2, (-I)*E^ArcCo
sh[a*x]] + (6*I)*a*ArcCosh[a*x]*PolyLog[2, I*E^ArcCosh[a*x]] + (6*I)*a*PolyLog[3, (-I)*E^ArcCosh[a*x]] - (6*I)
*a*PolyLog[3, I*E^ArcCosh[a*x]]

________________________________________________________________________________________

Rubi [A]  time = 0.310209, antiderivative size = 104, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.6, Rules used = {5662, 5761, 4180, 2531, 2282, 6589} \[ -6 i a \cosh ^{-1}(a x) \text{PolyLog}\left (2,-i e^{\cosh ^{-1}(a x)}\right )+6 i a \cosh ^{-1}(a x) \text{PolyLog}\left (2,i e^{\cosh ^{-1}(a x)}\right )+6 i a \text{PolyLog}\left (3,-i e^{\cosh ^{-1}(a x)}\right )-6 i a \text{PolyLog}\left (3,i e^{\cosh ^{-1}(a x)}\right )-\frac{\cosh ^{-1}(a x)^3}{x}+6 a \cosh ^{-1}(a x)^2 \tan ^{-1}\left (e^{\cosh ^{-1}(a x)}\right ) \]

Antiderivative was successfully verified.

[In]

Int[ArcCosh[a*x]^3/x^2,x]

[Out]

-(ArcCosh[a*x]^3/x) + 6*a*ArcCosh[a*x]^2*ArcTan[E^ArcCosh[a*x]] - (6*I)*a*ArcCosh[a*x]*PolyLog[2, (-I)*E^ArcCo
sh[a*x]] + (6*I)*a*ArcCosh[a*x]*PolyLog[2, I*E^ArcCosh[a*x]] + (6*I)*a*PolyLog[3, (-I)*E^ArcCosh[a*x]] - (6*I)
*a*PolyLog[3, I*E^ArcCosh[a*x]]

Rule 5662

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcC
osh[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1))/(Sqr
t[-1 + c*x]*Sqrt[1 + c*x]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5761

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]
), x_Symbol] :> Dist[1/(c^(m + 1)*Sqrt[-(d1*d2)]), Subst[Int[(a + b*x)^n*Cosh[x]^m, x], x, ArcCosh[c*x]], x] /
; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[n, 0] && GtQ[d1, 0] &&
 LtQ[d2, 0] && IntegerQ[m]

Rule 4180

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c
+ d*x)^m*ArcTanh[E^(-(I*e) + f*fz*x)/E^(I*k*Pi)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*
Log[1 - E^(-(I*e) + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e)
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin{align*} \int \frac{\cosh ^{-1}(a x)^3}{x^2} \, dx &=-\frac{\cosh ^{-1}(a x)^3}{x}+(3 a) \int \frac{\cosh ^{-1}(a x)^2}{x \sqrt{-1+a x} \sqrt{1+a x}} \, dx\\ &=-\frac{\cosh ^{-1}(a x)^3}{x}+(3 a) \operatorname{Subst}\left (\int x^2 \text{sech}(x) \, dx,x,\cosh ^{-1}(a x)\right )\\ &=-\frac{\cosh ^{-1}(a x)^3}{x}+6 a \cosh ^{-1}(a x)^2 \tan ^{-1}\left (e^{\cosh ^{-1}(a x)}\right )-(6 i a) \operatorname{Subst}\left (\int x \log \left (1-i e^x\right ) \, dx,x,\cosh ^{-1}(a x)\right )+(6 i a) \operatorname{Subst}\left (\int x \log \left (1+i e^x\right ) \, dx,x,\cosh ^{-1}(a x)\right )\\ &=-\frac{\cosh ^{-1}(a x)^3}{x}+6 a \cosh ^{-1}(a x)^2 \tan ^{-1}\left (e^{\cosh ^{-1}(a x)}\right )-6 i a \cosh ^{-1}(a x) \text{Li}_2\left (-i e^{\cosh ^{-1}(a x)}\right )+6 i a \cosh ^{-1}(a x) \text{Li}_2\left (i e^{\cosh ^{-1}(a x)}\right )+(6 i a) \operatorname{Subst}\left (\int \text{Li}_2\left (-i e^x\right ) \, dx,x,\cosh ^{-1}(a x)\right )-(6 i a) \operatorname{Subst}\left (\int \text{Li}_2\left (i e^x\right ) \, dx,x,\cosh ^{-1}(a x)\right )\\ &=-\frac{\cosh ^{-1}(a x)^3}{x}+6 a \cosh ^{-1}(a x)^2 \tan ^{-1}\left (e^{\cosh ^{-1}(a x)}\right )-6 i a \cosh ^{-1}(a x) \text{Li}_2\left (-i e^{\cosh ^{-1}(a x)}\right )+6 i a \cosh ^{-1}(a x) \text{Li}_2\left (i e^{\cosh ^{-1}(a x)}\right )+(6 i a) \operatorname{Subst}\left (\int \frac{\text{Li}_2(-i x)}{x} \, dx,x,e^{\cosh ^{-1}(a x)}\right )-(6 i a) \operatorname{Subst}\left (\int \frac{\text{Li}_2(i x)}{x} \, dx,x,e^{\cosh ^{-1}(a x)}\right )\\ &=-\frac{\cosh ^{-1}(a x)^3}{x}+6 a \cosh ^{-1}(a x)^2 \tan ^{-1}\left (e^{\cosh ^{-1}(a x)}\right )-6 i a \cosh ^{-1}(a x) \text{Li}_2\left (-i e^{\cosh ^{-1}(a x)}\right )+6 i a \cosh ^{-1}(a x) \text{Li}_2\left (i e^{\cosh ^{-1}(a x)}\right )+6 i a \text{Li}_3\left (-i e^{\cosh ^{-1}(a x)}\right )-6 i a \text{Li}_3\left (i e^{\cosh ^{-1}(a x)}\right )\\ \end{align*}

Mathematica [A]  time = 0.167938, size = 128, normalized size = 1.23 \[ -\frac{\cosh ^{-1}(a x)^3}{x}+3 i a \left (-2 \cosh ^{-1}(a x) \left (\text{PolyLog}\left (2,-i e^{-\cosh ^{-1}(a x)}\right )-\text{PolyLog}\left (2,i e^{-\cosh ^{-1}(a x)}\right )\right )-2 \text{PolyLog}\left (3,-i e^{-\cosh ^{-1}(a x)}\right )+2 \text{PolyLog}\left (3,i e^{-\cosh ^{-1}(a x)}\right )+\cosh ^{-1}(a x)^2 \left (-\left (\log \left (1-i e^{-\cosh ^{-1}(a x)}\right )-\log \left (1+i e^{-\cosh ^{-1}(a x)}\right )\right )\right )\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[ArcCosh[a*x]^3/x^2,x]

[Out]

-(ArcCosh[a*x]^3/x) + (3*I)*a*(-(ArcCosh[a*x]^2*(Log[1 - I/E^ArcCosh[a*x]] - Log[1 + I/E^ArcCosh[a*x]])) - 2*A
rcCosh[a*x]*(PolyLog[2, (-I)/E^ArcCosh[a*x]] - PolyLog[2, I/E^ArcCosh[a*x]]) - 2*PolyLog[3, (-I)/E^ArcCosh[a*x
]] + 2*PolyLog[3, I/E^ArcCosh[a*x]])

________________________________________________________________________________________

Maple [F]  time = 0.099, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ({\rm arccosh} \left (ax\right ) \right ) ^{3}}{{x}^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccosh(a*x)^3/x^2,x)

[Out]

int(arccosh(a*x)^3/x^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{\log \left (a x + \sqrt{a x + 1} \sqrt{a x - 1}\right )^{3}}{x} + \int \frac{3 \,{\left (a^{3} x^{2} + \sqrt{a x + 1} \sqrt{a x - 1} a^{2} x - a\right )} \log \left (a x + \sqrt{a x + 1} \sqrt{a x - 1}\right )^{2}}{a^{3} x^{4} - a x^{2} +{\left (a^{2} x^{3} - x\right )} \sqrt{a x + 1} \sqrt{a x - 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccosh(a*x)^3/x^2,x, algorithm="maxima")

[Out]

-log(a*x + sqrt(a*x + 1)*sqrt(a*x - 1))^3/x + integrate(3*(a^3*x^2 + sqrt(a*x + 1)*sqrt(a*x - 1)*a^2*x - a)*lo
g(a*x + sqrt(a*x + 1)*sqrt(a*x - 1))^2/(a^3*x^4 - a*x^2 + (a^2*x^3 - x)*sqrt(a*x + 1)*sqrt(a*x - 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\operatorname{arcosh}\left (a x\right )^{3}}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccosh(a*x)^3/x^2,x, algorithm="fricas")

[Out]

integral(arccosh(a*x)^3/x^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{acosh}^{3}{\left (a x \right )}}{x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acosh(a*x)**3/x**2,x)

[Out]

Integral(acosh(a*x)**3/x**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{arcosh}\left (a x\right )^{3}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccosh(a*x)^3/x^2,x, algorithm="giac")

[Out]

integrate(arccosh(a*x)^3/x^2, x)